Search for gluinos and squarks with Missing Energy plus multijets CDF (Run Ib) data

Maria Spiropulu EFI/UofC Nov 3 2000

FNAL W&C

Missing Energy provides the classic R-parity conserving SUSY signature $(R=(-1)^{3B+L+2S})$ but appears in many other phenomenological paradigms

MET + 3 jets (squarks, gluinos), MET + c-tagged jets (scalar top)

MET + b-tagged jets (scalar bottom, Higgs), MET + monojet (gravitino, graviton) WET + photons (gravitino)

Fake Missing Ene

DIES E transverse Sta-Did 6800 Die

INSTRUMENTAL SOURCES OF MISSING ENERGY

MAIN RING
DETECTOR MALFUNCTIONS/NOISE
COSMICS

These are eliminated with a set of timing and good jet quality requirements

Jets

Jet variables used for "good jetiness" criterion:

- * Charge Fraction (CHF)
- * EM fraction (EMF)

DATA PRE-SELECTION

DATA PRE-SELECTION

of 2517998 events	Number of events fail
$ ot\!$	1123734
Out-Time	506241
Stage $1 = E_T \oplus \text{Out-Time}$	1625603
Total passing Stage 1	892395

of 892394 events	Number of Events Fail
1 central jet	372978
EEMF	24992
ECHF	591449
Total passing Stage 2	300945

MISSING ENERGY + MULTIJET STANDARD MODEL COMPONENT

 $Z(\rightarrow 11) + j$ ets $W(\rightarrow 1n) + j$ ets $t\overline{t}$, single top KDiboson QCD multijet

Note: The missing energy is a QCD sample

FNAL W&C

SEARCH OUTLINE **SQUARKS GLUI NOS** Missing Energy+ multijet channel Open search BOX(es) **Blind Box Comparison Data** with Predictions/ **Optimization** Missing Energy+ Missing Energy+ multijet CDF multijet Standard data **Model reactions**

SUPERSYMMETRY Fermi on & Boson

Solves the "hierarchy problem"

Apparently Unifies the three gauge couplings

If R-parity is conserved

- sparticles are produced in pairs and eventually decay to the

Lightest

SUSY Particle (LSP)

- the LSP is stable and weakly interacting
 - > missing energy signature

LSP is a good candidate for dark matter

Name	Spin	R	Mass Eigenstates	Gauge Eigenstates
Higgs bosons	0	+1	$h^0 H^0 A^0 H^{\pm}$	$H_u^0 H_d^0 H_u^+ H_d^-$
			$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$	$\widetilde{u}_L \ \widetilde{u}_R \ \widetilde{d}_L \ \widetilde{d}_R$
squarks	0	-1	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$	$\widetilde{s}_L \ \widetilde{s}_R \ \widetilde{c}_L \ \widetilde{c}_R$
			$\widetilde{t}_1 \ \widetilde{t}_2 \ \widetilde{b}_1 \ \widetilde{b_2}$	$\widetilde{t}_L \ \widetilde{t}_R \ \widetilde{b}_L \widetilde{b}_R$
			$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$	$\widetilde{e}_L \ \widetilde{e}_R \ \widetilde{ u}_e$
sleptons	0	-1	$\widetilde{\mu}_L \; \widetilde{\mu}_R \; \widetilde{ u}_\mu$	$\widetilde{\mu}_L \; \widetilde{\mu}_R \; \widetilde{ u}_\mu$
			$\widetilde{ au}_1 \ \widetilde{ au}_2 \ \widetilde{ u}_{ au}$	$\widetilde{ au}_L \widetilde{ au}_R \widetilde{ u}_{ au}$
neutralinos	1/2	-1	$\mathbf{M}_{1}\widetilde{\chi}_{1}^{0} \ \widetilde{\chi}_{2}^{0} \ \widetilde{\chi}_{3}^{0} \ \widetilde{\chi}_{4}^{0}$	$\widetilde{B}^0 \ \widetilde{W}^0 \ \widetilde{H}_u^0 \ \widetilde{H}_d^0$
charginos	1/2	-1	$\mathbf{M2}\widetilde{\chi}_1^\pm\widetilde{\chi}_2^\pm\widetilde{\chi}_3^\pm$	$\widetilde{W}^{\pm} \ \widetilde{H}_u^+ \ \widetilde{H}_d^-$
gluino	1/2	-1	$M3 \qquad \widetilde{g}$	\widetilde{g}
gravitino/ goldstino	3/2	-1	\widetilde{G}	\widetilde{G}

The Super-Models

MSSM

mSUGR

 $A = M_{1/2}$ unified gaugino masses $M_0 = unified = scalar = masses$ $tan \beta = \frac{\upsilon_2}{\upsilon_1}$ $A_0 = unified = trilinear = couplings$ $sign \ \mu$

Present Results

mSUGRA DØ result

Production/Decay Graphs

ANALYSIS DRIVING VARIABLES

The Missing Transverse Energy

$$\mathbf{E}_{\mathbf{T}}$$

The Number of Jets

$$N_{
m j\,et}$$

$$\mathbf{E}_{\mathbf{T}}(2^{\text{ndjet}}) + \mathbf{E}_{\mathbf{T}}(3^{\text{rdjet}}) + \mathbf{E}_{\mathbf{T}}$$

$$\mathbf{H}_{\mathbf{T}}$$

The Number of isolated tracks

$$N_{
m trk}^{
m i\,so}$$

"The BOX"

$Z/W+ \ge N j ets(N=2, 3)$

For this analysis the Z/W + N jet predictions are normalized to the Zee+jets CDF data using:

$$\mathbf{R} = \frac{\mathbf{N}}{\mathbf{N} + \mathbf{1}} \Big|_{\mathbf{DATA}}^{\mathbf{DATA}}$$
 to normalize the 3 jet

predictions using the 2 jet data

$$\mathbf{R'} = \frac{\mathbf{W}}{\mathbf{7}}$$
 to normalize the W predictions

using the Z data

Ratios in the normalization:

Lds/dNjet

Ratios in the normalization: $\frac{W}{7}$

Lepton Universality

$Z+ \ge N j ets(N=2, 3)$

SHAPES

$Z+ \ge N j ets(N=2, 3)$

tt, singletop, di boso

MC samples Luminosity norm using theoretical cross sections

$$\sigma_{t\bar{t}} = 5.06 \, \mathbf{pb} \, \pm 18\%$$

$$\sigma_{\text{Wg}} = 1.7 \, \text{pb} \pm 17\%,$$

$$\sigma_{\mathbf{W}^* \to t\bar{b}} = \mathbf{0.73 \ pb} \pm 9\%$$

$$\sigma_{\mathbf{w}} = 9.5 \, \mathbf{pb} \pm 7\%$$

$$\sigma_{WZ} = 2.6 pb \pm 12\%$$

$$\sigma_{zz} = 1.\mathbf{pb} \pm 20\%$$

- ➤ Simulate 3-jet events for a very low threshold trigger (JET20) and a higher threshold trigger (JET50).
- ➤ NO Missing Energy required- use the whole Missing Energy spectrum.
- ➤ Fold in the trigger efficiencies measured in the data.
- ➤ Merge samples and compare kinematic lineshapes between data and QCD predictions.
- ➤ Measure the prescale factors and Luminosity of the JET data samples used.

Missing Energy from QCD mismeasurements

Missing Energy from QCD mismeasurements

Missing Energy from QCD mismeasurements

Analysis Path

Requirement	Number of Events passing			
Pre-Selection and				
Bad Run veto	286728, (I)			
$N_{jet} \ge 3$ (cone .7, $E_T \ge 15$ GeV)	107509,(II)			
Fiduciality	100 minutes (100 m			
fiducial 2nd,3rd jet	57011			
$2-D \delta \phi$	23381			
BOX data 1	emoved			
$E_T(1) \ge 70 \text{GeV}$				
$E_T(2) \ge 30 \text{GeV}$	ANY RELIGIOUS AND LOSS.			
$ \eta_d (1 \text{ or } 2 \text{ or } 3) < 1.1$	6435,(III)			
$EMF(1),EMF(2) \le 0.9$	6013			
L2 trigger	4679			
$\delta\phi_{min} \geq 0.3$	2737			

Analysis Path

Comparisons SM predictions-Data around the Blind Box

	Description	EWK	QCD	All	Data
1	$E_T \ge 70, H_T \ge 150, N_{trk}^{iso} > 0$	13.9	6.26	20.2 ± 4.7	10
2	$E_T \ge 70, H_T < 150, N_{trk}^{iso} = 0$	2.3	6.26	8.6 ± 4.5	12
3	$35 < E_T < 70, H_T > 150, N_{trk}^{iso} = 0$	1.95	134.6	136.5 ± 27.8	134
4	$E_T > 70, H_T < 150, N_{trk}^{iso} > 0$	1.73	0	1.73 ± 0.3	2
5	$35 < E_T < 70, H_T > 150, N_{trk}^{iso} > 0$	13.95	9.39	23.34 ± 5.7	24
6	$35 < E_T < 70, H_T < 150, N_{trk}^{iso} = 0$	4.9	413.16	418.1±68.8	410
7	$35 < E_T < 70, H_T < 150, N_{trk}^{iso} > 0$	3.3	28.17	31.4 ± 10.2	35
8	$E_T > 70, H_T > 150, N_{trk}^{iso} = 0$	35.3	40.69	76.02 ± 12.8	?
9	$35 < E_T < 70, H_T < 150$	8.2	441.3	449.5 ± 72	445

Comparisons SM predictions-Data around the Blind Box

SHAPES AROUND THE BOX (examples)

OPTIMAZATION IN SUSY SPACE

Regions	$E_T, H_T(\text{GeV})$	Standard Model prediction
A/D	90,160	32.7 ± 6.7
В	110,230	$3.7 \pm .5$
C	110,170	10.6 ± 1

"The BOX"

The Box: SM Expected 76(13)

"The BOX"

The Box: SM Expected 76(13)

"The BOX"

A/D SUSY boxes: SM Expected 33(7)

A/D SUSY boxes: SM Expected 33(7)

SUSY box B SM Expected 3.7(0.5)

SUSY box B SM Expected 3.7(0.5)

SUSY box C: SM Expected 10.6(1)

SUSY box C: SM Expected 10.6(1)

Box	MET,HT	Expected	Observed	N _{95%C.L.} .
A	90,160	32.7 ± 6.7	31	17.7
В	110,230	3.7 ± 0.5	5	7.4
C	110,170	10.6 ± 1	14	11.9
D	90,160	32.7 ± 6.7	31	17.3

% Overall Relative Uncertainty on Signal Acceptance

ind	a16	a14	b13	b 4	d18	d6
% <pdfs></pdfs>	6.5	3.5	5.5	4	3	5
% max(Radiation)	12.5	6	3	4	3	3
$\% \ max(Q^2)$	6.5	6.5	5.5	5.5	4	9
% <jet></jet>	4.5	3.5	6	6	3	4
% Trigger	2					
% MC stat.	< 0.2					

A B C D
σ_A% 15 11 11 10

For $m_{\tilde{q}} \approx m_{\tilde{g}} \text{ m} < 300 \text{ GeV/c}^2$ For $m_{\tilde{q}} << m_{\tilde{g}} m_{\tilde{g}} < 570 \text{ GeV/c}^2$ For $m_{\tilde{q}} >> m_{\tilde{g}} m_{\tilde{g}} < 195 \text{ GeV/c}^2$

Phenomenological Implications/Discussion

then SUSY requires fine tuning and the hierarchy problem reappears. How much fine tuning is tolerable determines how probable low energy supersymmetry is and how soon it will be discovered.

It has been recently pointed out (Bastero-Gil et al./ Dimopoulos et al.) that the electroweak scale looks more natural if M₃ is relatively small.

Phenomenological Implications/Discussion

$$M_Z^2 = -1.7\mu^2 + 7.2M_3^2 - 0.24M_2^2 + 0.014M_1^2 + ...$$

The required cancellation is easier if the gluino mass is not so big.

$$\mathbf{M}_{3} \ge 300 \longrightarrow \frac{7.2\mathbf{M}_{3}^{2}}{\mathbf{M}_{\mathbf{Z}}^{2}} \ge 80$$

With gaugino mass unification $M_1:M_2:M_3::0.5:1:3.3$

The result of this analysis as well as the LEP result on the chargino $M_2 < 90$ GeV make it interesting to drop gaugino unification and allow lower gluino mass.

Phenomenological Implications/Discussion

If low energy supersymmetry exists and given that the amount of fine tuning depends critically on the gluino mass, this result indicates that RUNII and the missing energy + jets channel (with lepton veto) constitute a very good probe and have discovery potential.

Candidate Event

